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Abstract-A general analysis including arbitrary thermal boundary conditions has been made for the 
energy transport in a circular tube in which a highly rarefied gas is flowing. Thermal radiation acts 
simultaneously with the free-molecule convection. Detailed consideration was given to the cases of 
uniform wall temperature, uniform wall heat flux, and the adiabatic wall. It was found that at all 
temperature levels except those well below room temperature, the results corresponding to combined 
convective and radiative transport differ little from those for purely radiative transport. Whenever 
results for the purely radiative transport differed appreciably from those of the purely convective 

transport, the radiation appeared to be the dominant mode in the simultaneous transport process. 

NOMENCLATURE 

surface area ; 
accommodation coefficient ; 
tube diameter ; 
convective energy/time-area; 
angle factor; 
solution of equation (12); 
solution of equation (16) ; 
integral defined by equation (13) ; 
tube length; 
mass flux/time-area; 
pressure; 
overall heat flux/time ; 
local heat flux/time-area ; 
uniform heat flux; 
gas constant; 
absolute temperature; 
uniform wall temperature; 
dimensionless co-ordinate, xJd; 
axial co-ordinate. 

Greek symbols 
a, absorptivity; 
8, ratio of convective to radiative energy 

efflux ; 
Y, specific heat ratio ; 

;I 
emissivity ; 
energy variable, equation (9a) ; 

if, 6’9 dummy integration variables; 
PV reflectivity; 
0, Stefan-Boltzmann constant. 

Subscripts 
1, reservoir 1; 
2, reservoir 2 ; 
r, rad, radiative; 
m, mol, molecular. 

INTRODUCTION 

THIS paper is concerned with the simultaneous 
energy transport by convection and radiation 
in a rarefied gas. Consideration will be given to 
the free-molecule regime, wherein the density 
level is such that the molecular mean free path is 
much larger than a typical apparatus dimension. 
The energy transport will be studied here for the 
case of the circular tube. The mass flow in a 
circular tube under free-molecule conditions has 
already been investigated in some detail. This 
work is summarized in [l], which is also devoted 
to demonstrating a useful analogy between the 
transfer of both mass and energy in a rarefied 
gas and the transfer of energy by thermal 
radiation. To demonstrate the analogy, the 
energy throughflow and surface temperature 
distribution associated with the convective 
transport were calculated for the case of the 
adiabatic tube wall. Pure radiative transport 
through tubes has been studied by a number of 
investigators [2, 3, 41. To the knowledge of the 
authors, the problem of simultaneous transport 
has heretofore not been analysed. 

To get a feeling for the relative magnitudes of 
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the energy quantities involved, it is instructive 
to compare the equilibrium energy fluxes 
streaming from an isothermal cavity (temperature 
T, pressure p) by radiation and by free-molecule 
convection. The rate of radiative efflux per unit 
area is uT4, while the rate of convective energy 
transport e per unit area is [5] 

e = @5R (k!d? mT 

[ 1 (Y-1) 
in which m, the mass flux per unit area, has the 
value 

(2) 

for equilibrium efflux from an isothermal cavity. 
Then, forming the ratio (to be called 8) of the 
free-molecule to the radiative flux, there follows 

B= 
mR(y + 1) 
2(r - l)uT3’ (3) 

For air at 500”R (room temperature), /I = lo5 
p (atm). For a tube diameter of O-1 in, pressures 
no greater than 2 p Hg (2.6 x 1O-6 atm) would 
probably insure free-molecule conditions; while 
for a tube diameter of 1 in, pressures of O-2 p Hg 
and less would be required.* The corresponding 
room-temperature /3 values would be 0.26 and 
0.026. Since /3 N T-s.5, it is seen that /I becomes 
larger at low temperatures and becomes smaller 
at high temperatures. 

A schematic diagram of the circular tube 
system under consideration here is shown in Fig. 
1. A tube of diameter d and length L connects two 
reservoirs. The reservoirs are large enough to 
achieve internal thermodynamic equilibrium, and 
the reservoir pressures are maintained by pumps 
in an external flow circuit. The emission and 
reflection of thermal radiation and the reflection 
of mass at the tube wall is assumed to be diffuse. 

GENERAL ANALYSIS 

The local rate of heat transfer q at any location 
along the tube surface is the sum of radiative qr 
and free-molecular qm contributions, 

9 = qr + qm (4) 
____ 

* Ratio of mean free path to diameter is 10. 

in which the heat fluxes are positive when heat 
flows out of the surface. It is now necessary to 
relate qr and qm to the thermal and flow para- 
meters of the system. These derivations are 
quite lengthy, and only a general outline will be 
given. For the net radiative flux qr at some 
location x (area d&) there are the following 
contributions to be considered: (a) the emission, 

y-y 
FIG. 1. Schematic of the circular tube system 

wT4(x); (b) the radiation from the reservoirs 
1 and 2 which is directly incident and is absorbed 
at x; (c) the radiation coming from all other sur- 
face locations on the tube wall which arrives and 
is absorbed at X. Because there is thermal equili- 
brium in the reservoirs, the radiation streaming 
into the tube is black-body radiation which is 
uniformly and diffusely distributed across the 
sections at x = 0 and x = L. From reservoir 1, 
an energy flux uT~F~-~ arrives at x per unit time 
and area; the corresponding quantity from 
reservoir 2 is aTtjFze2. Of these, a fraction a is 
absorbed. The absorbed energy flux discussed in 
item (c) requires a somewhat lengthy derivation 
which will be omitted here. Putting together the 
various contributions to qr and additionally 
assuming gray-body conditions (C = a), there is 
obtained 

qr(X) = auT4(X) - auT;JFx-1 - aaTjFx-2 

-au(t/d T4(f) dFx-, + (1 ~ a) J”$dqr(f) dFx--~c 

(5) 

The last term on the right represents the energy 
absorbed at X due to inter-reflected radiation. 

The heat flux qm for the molecular convection 
is most easily derived by analogy with the radia- 
tion balance of equation (5). In fact, it is only 
necessary to replace a by the accommodation 
coefficient a and uT4 by the convective energy 
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flux e. This latter quantity is related to the tem- 
peratures and pressures of the system in accor- 
dance with equation (I), in which mass flux m 
has the following forms depending on whether 
e,, e,, or e(x) is being described 

Pl,Z 

m’12 = 2/(YmqJ ’ 

m(x) = wf(x) + m2f(L - 4. (6) 
Thef function has been calculated in [ 11. 

If the surface temperature is prescribed, then 
equation (5) becomes an integral equation for 
determining qr without recourse to the qm. 
Similarly, the qm equation is independent of the 
radiation process. The separate solutions for 
qr and qm can be added together in accordance 
with equation (4), and the local heat flux q 
corresponding to the prescribed surface tempera- 
ture thus obtained. 

For prescribed heat flux q, the foregoing 
equations are not at all convenient since the 
separate components qr and qm would, in general, 
not be known. It is therefore necessary to pro- 
ceed further. After a rather lengthy development, 
it was found possible to combine the qr and qm 
equations with the aid of (4). The result is a 
single, albeit highly complex, integral equation 
involving T and q. 

-q(X) + uuT4(X) + ue(X) - A(X) 

=u &dT4(t)[a(2 - U) dFx-, 

- a(1 - 0) dK(5, WI 
+ .ft’” e(O[u(2 - a> dFx-6 
- 41 - a) W5, x)1 
- Sk’” q(f) i [(I - a) + (1 - 43 dFx-, 
- (1 - a) (1 - a> dK(& A’)} (7) 

in which A(X) represents a known function of X, 

/1(X) = (aoT; + ue2)Fx-2 - [a(1 - u)oT; 

+ u(l - a)e21 j,“‘” Fg-2 dFx-, 
+ (aaT;’ + uel)F_t-l - [a(1 - u)uTf 

+ a(1 - u)eJ J”ild Fg-l dFx_, (74 

and dK is an abbreviation for 

dK(f, X) = J;/p, dFypF dFx-(,, (7b) 

with 5’ a dummy integration variable. 

If q is prescribed, then in principle, the tem- 
perature distribution T(X) can be solved for 
from equation (7). However, the practical 
aspects of obtaining solutions are quite formid- 
able. First of all, the equation is nonlinear. 
Numerical treatment would almost certainly be 
required, especially since the f(X) functions 
appearing in the e(X) are available numerically. 
Even for the simplest problem of uniform wall 
heat flux q(X) = q. there would be seven inde- 
pendent parameters which would have to be 
specified for each numerical solution. 

u. (8) 

If only two values of each parameter were 
considered, this would amount to 128 (2’) 
separate cases. The computational effort for the 
general situation a # a is clearly enormous. 

For the special situation in which CC = a, a 
significant simplification results. Upon adding 
the qr and qm equations and noting that 
4 = 9r + qrn, 

4Gu -- 
U 

= B(X)- BIFx-l - t'2Fx-2 

s 

Lid 
e(f) dFx-,+ (1 - u) 

s 

L'"&3 - .a dFx-., (9) 
0 0 

in which 

0 = e + aT4. (94 

For a prescribed heat flux q(X), equation (9) 
is a linear integral equation for B(X). The 
linearity means that separate solutions can be 
obtained corresponding to each of the inhomo- 
geneous terms [i.e. terms not containing O(x)], 
and the separate solutions are added to give the 
complete solution. In this way, the number of 
parameters which must be prescribed for a 
given numerical solution are substantially re- 
duced. Also, the linearity of the equation con- 
tributes to the certainty that a numerical solu- 
tion can be obtained. 

DISCUSSION 

In deciding on a reasonable direction for the 
numerical work, it is appropriate to look at the 
properties of typical engineering materials. 
Surfaces which may be expected to emit and 
reflect infra-red radiation in an approximately 



diffuse manner include non-metals, metallic 
oxides, and perhaps very rough metallic sur- 
faces. Such surfaces have moderate or high 
values for the absorptivity coefficient a. On the 
other hand, experimental values of the accom- 
modation coefficient a for various gases on 
engineering surfaces which have not been 
physically and chemically cleaned and purged 
of adsorbed gases tend to be high. In the light of 
the foregoing discussion, it would appear that the 
values of a and a appropriate to an analysis 
based on diffusely distributed radiation should 
not be greatly different. 

For the case of prescribed surface tempera- 
ture, the heat fluxes due to radiant transport 
and to free-molecule transport can be deter- 
mined separately. The combined heat flux can 
then be found by summing these separate con- 
tributions for any a or a, but as described above, 
the results have practical meaning only for 
moderate and high values of a and a. 

For the case of prescribed heat flux, it would 
be necessary to deal with equation (7) for the 
case of a # a. When a = a, then equation (9) 
can be applied. In view of the foregoing con- 
sideration of the magnitudes of a and a, and 
taking the complexity of (7) into account, the 
authors are persuaded that (9) is a more appro- 
priate starting point for numerical consideration 
than is (7). From the results to be presented in 
later sections, it will be seen that for surfaces 
which can realistically be considered as diffuse, 
there is little motivation to pursue the refinements 
(i.e. a # a) contained in equation (7). 

In the following section, consideration will be 
given to the uniform wall temperature problem. 
Subsequent sections will treat the uniform heat 
flux problem and the adiabatic wall problem. 

UNIFORM WALL TEMPERATURE 

For the case of uniform wall temperature, 
T(X) = T,, the governing equation (5) for the 
radiative heat transfer can be simplified by using 
the identity Ji’d dFx_, = 1 - Fx, - Fx-~, and 
the solution may be written 

The rate Q at which heat is transferred from 
the entire tube wall may be found by integrating 

__- 
+ u(Ti - q& (; - x). (lo) 

\ / equations (7a), (7b) and (11). 
*The required angle factors may be found in [l], 

844 E. M. SPARROW and V. K. JONSSON 

Similarly, the result for qm is 

+ ig- 1) f&g, (“d- Xl. (11) 

The g function appearing in the foregoing is 
obtained by solving 

gi(X) = Fx-1 + (1 - i) &‘dga(6) dFx_,. (12) 

To complete the heat-transfer results, it still 
remains to supply the g functions. These have 
been found by solving equation (12)* for L/d 
values ranging from l/4 to 32 and for a or 
a values ranging from 0.2 to 1. This information 
is presented graphically on Figs. 2 and 3, the 
first of which pertains to smaller L/d while the 
last pertains to larger L/d. 

For short tubes, the g function varies only 
slightly with X. Correspondingly, the heat flux 
should have only a moderate x dependence. For 
long tubes, the g function is essentially zero 
throughout the entire tube, except for the 
region near the end where there is a rapid varia- 
tion. The heat transfer should also vary rapidly 
near the end and be essentially zero elsewhere. 
The level of the g curves is lower with increasing 
a or a. However, the effect of this on q(x) is 
opposed by the factors of a and a which appear 
in equations (10) and (11). 

With the information provided in Figs. 2 and 
3, the local heat flux q can now be calculated by 
adding the qr and qm. Inspection of the final 
equation for q reveals the presence of seven 
independent dimensionless parameters as well 
as x/d. In any reasonable amount of space, 
it is not possible to provide plots which will 
demonstrate the complete parametric depen- 
dence of the heat transfer. The best that one can 
do is to try to establish some feeling for the 
trends. Such a discussion can be carried out in a 
somewhat simpler way for the soon-to-be- 
presented overall heat-transfer results in which 
x/d dependence does not appear. 
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FIG. 3. The g function for the uniform wall tempW+ture problem, range of large L/I. 
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L/d 

FIG. 4. The I integral for the overall heat-transfer calculation. 

the local heat flux 4, Q = j,” q(x)nd (dx). 
Carrying out the integration and introducing 
the abbreviation 

L/d 

Ii = 

s 
o gi(X)dX = /r’gi t$-- X) dX (13) 

there results 

in which the subscripts a and a identify the 
parameter on which I depends. The numerical 
values of I have been plotted on Fig. 4 as a 
function of the tube length-diameter ratio for 
parametric values of a or a. The most-striking 
feature of this graph is the fact that I is relatively 
independent of L/d except for short tubes. 
Considering equation (14), this implies that for 
tubes which are not too short, the overall heat 
transfer is relatively insensitive to changes in the 
length. For instance, the heat transfer from a 
tube having L = 15d is less than 1 per cent 
different from a tube having L = 30d. 

(14) 

To get some feeling for the effect of the dimen- 
sionless parameters, Figs. 5 and 6 have been 
prepared. The figures show the overall heat 
transfer as a function of & in the range between 
0 and 2. Fig. 5 is devoted to a typical short tube, 
L/d = 1; while Fig. 6 is typical of a long tube, 
L/d = 24. Curves are shown for two tempera- 
ture conditions: T,,/T, = T,/T, = 19 1 (solid 
lines) and To/T, = T,/T, = 1.6 (dashed lines), 
and a variety of a and a values. The /?r = 0 case 
corresponds to purely radiative transport, and 
the curves have been normalized by the heat 
transfer Q,,d for pure radiation. Therefore, 
the deviations of Q/Qrad from unity give a 
direct measure of the effects of free-molecule 
convection. 

From the figures it is seen that for small 
values of /X1, the free-molecule transport con- 
tributes to a rather small increase in the heat 
transfer relative to that for pure radiation. 
Recalling (from the Introduction) that for room 
temperature and typical pressures, p1 - 0*025- 
0.25, and noting further that fi, - T-s.5, it 
follows that the radiative transport clearly 
dominates at temperatures above room tem- 
perature. At lower temperatures and higher 
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FIG. 5. 

4. 
Illustrative overall heat-transfer results for the uniform wall temperature case, L/d = 

- ----G/q =5/T,= 1.6 

- &=WALL TEMI? 
1.6- r 

- 7;) ?I,= RESERVOIR TEMPS. 

FIG. 6. Illustrative overall heat-transfer results for the uniform wall temperature case, L/d = 24. 
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pressure levels* fll can grow larger, but radiation 
should still be dominant for a and a vaIues at 
which the assumption of diffuse reflection is 
reasonable. 

The trends for the short tube (Fig. 5) are also 
in evidence for the long tube (Fig. 6). But, there 
is one marked difference. Namely, that for the 
long tube, the results are much less influenced 
by the detailed values of a and a. It may addi- 
tionally be noted from Fig. 4 that tubes of 
moderate length already behave like long tubes.’ 

UNIFORM WALL HEAT FLUX 

As previously discussed, consideration of the 
uniform heat flux case will be specialized to the 
situation a = a. To determine the wall tem- 
perature corresponding to the prescribed heat 
flux qO, the first step is to solve equation (9) for 
the f3 distribution and then, with this e(X) as 
input, the next step is to solve the quadratic 
equation (Pa) for T(X). 

The solution of equation (9) is facilitated by 
its linearity. 

O(X) = e(X) + oT4(X) = &f‘(X) 

_-.-____I~-._.~ __-. 

* Smaller apparatus dimensions would be required to 
achieve free-molecule conditions at higher pressures. 

in which 

Jr(X) = 1 -t f;‘dk(l) df$,. (16) 

Additionally, in deriving equation (15), the 
identity f(X) + f (L/d -- X) :=- 1 has been used 
[I]. Then, by introducing the definitions of B 
and e and rearranging, one can derive 

(l-9 

This is a fourth degree algebraic equation, the 
solution to which gives the distribution of the 
wall temperature as a function of position along 
the tube. The~function needed in this calcufa- 
tion is pIotted on Fig. 2 of [I] for L/d values up 
to 24. For larger L/d, it is sufficient to use 
f(X) = 1 - ~d/L)~. The k function has been 
determined as part of this investigation and is 
plotted on Fig. 7 as a function of x/L. The curves 

16 

8 

FIG. 7. The h function for the uniform heat flux case. 
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FIG. 8. Illustrative wall temperature results for the uniform heat flux case, L/d = I. 
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correspond to L/d values ranging from l/4 to 32. 
The figure shows that in addition to an increase 
in level with L/d, the h function also varies 
strongly with position for the longer tubes- 
the larger values being at the center of the tube 
(x = 0*5L). That this is physically plausible may 
be understood by noting that h is directly related 
to the distribution of the tube wall temperature 
corresponding to the case of uniform wall heat 
flux [4]. 

The surface temperature distribution depends 
upon prescribed values of six independent 
parameters, equation (17). Once again, space 
limitations preclude a presentation of the com- 
plete parametric dependence of the results. 
However, to provide an insight into trends, the 
illustrative Figs. 8 and 9 have been prepared. 
Attention is directed first to Fig. 8, which is 
meant to typify short tubes. Here, there is 
plotted the wall temperature at the mid-plane 
(x = 0.5L) as a function of energy flux ratio & 
for parametric values of T,/T,, p2/p1 and a(=a). 
The mid-plane temperature has been normalized 
by the temperature Trad which would exist at 
this location if radiative transport acted alone. 
Therefore, the deviation of the curves from unity 

T(O.5 1 
T(O.5 Irod 

immediately gives the effect of free-molecule 
convection. Working plots (not shown here) 
for locations x = 0 and x = L in the L/d = 1 
tube are qualitatively similar to Fig. 8. and 
differ quantitatively only to a small extent. 
This is to be expected in a short tube. 

The first point to be noted in appraising Fig. 8 
is the rather expanded ordinate scale. Cor- 
responding to the prior estimate of 0.025-0.25 
for & at room temperature, it is seen from the 
figure that the wall temperature is very little 
different from that which would exist for purely 
radiative transport. Even for higher p1 values 
(lower temperature levels), the deviations from 
Trad are not appreciable in most cases. There are 
a few curves, all for p2/p1 = 3, which indicate 
moderate deviations from Trad at the larger & 
values. However, since & N pl, it is not likely 
that large ,9, and large p,/p, will occur simul- 
taneously. The results of Fig. 8 were calculated 
for the condition a = a. It is expected that the 
deviations of T from T&d will not be large at 
small /31 for any a and a consistent with the 
diffuse model. 

Fig. 9, typical of long tubes, is constructed 
somewhat differently from Fig. 8. This is 
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PI 

FTC. 9. Illustrative wall temtxrature rest&s for the uniform heat AUX case, L/d = 24. 

necessary because the TjTrrad ratio is now a 
stronger function of position. The Lower part of 
the figure is devoted to x -I L, while the upper 
part is for x = 0 and x = WZ, Expanded 
ordinate scales are employed as before. An 
important feature of Fig. 8 is the fact that the 
dependence of the T/TFrra ratio on a is essentially 
neghgible. In fact, the term (1 - LX& may be 
deleted from equation f l7) without loss, for 
vatues of a and a that are realistic for the con- 
dition of diffuse reflection and emission. In 
effect, this removes the restriction that a = a. 
The deviations of T/Z-&d from unity are seen to 
be small for room temperature & values 
(04J25-0~25). The Iowest curve on the figure 
indicates that cases do exist where large devia- 
tions are possible provided that 8, and pa/p1 are 
both Iarge; but as previously discussed, this is 
not a too likely situation. 

AIHABAT~C WALL 

The adiabatic wall condition can be treated as 
a special. case of the uniform heat flux analysis 
merely by setting y. = 0 in equation (17). These 
results depend on four parameters: TJT,, 
pzfp,, LJd, and &. As before, there are too many 
parameters for a detailed graphical presentation, 
and representative cases will be selected to show 
trends. 

Fig, IO presents adiabatic wall temperature 
results for L/d = 1, a typical short tube. The 
upper part of the figure is for Tz/Tl = 1.1, while 
the lower part is for r,j.rI = I-6. Curves are 
given for three locations: x = 0, x = ML, and 
x = I.,. The results are normalized by the adia- 
batic wall temperature for pure radiation, ?&,a. 
The durations of Tfrom &$d are seen to be Small. 
indeed. It might at first appear that this is 
because the radiation dominates over the 
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-----x=OSL IL/d=lj 
---_x=L 

098 - 

FIG. 10. Illustrative adiabatic wall temperature results, L/d = 1. 

molecular transport. However, this is not neces- before, whenever Tmol and &,d are appreciably 
sarily so. To check this matter, the ratios of different, the radiative transport wins out. 
T’,,i (the adiabatic wall temperature for pure 
molecular transport) to Trad have been calculated 
and are listed in the right-hand margin of Fig. 10. 
It is seen that for most cases, Tmol and Trad are 1. 
not very different. It is therefore reasonable that 
the adiabatic wall temperature which results 2. 
when both processes are operating simul- 
taneously will not be very different from either 
TmOl or 7&i. For those few cases where Tmol and 3. 
Trad are significantly different, the radiative 
transport appears to be dominant. This con- 4. 
elusion ought also to hold for a # a which are 
realistic for diffuse surfaces. 
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The findings for the long tube can be stated 5. 
without the assistance of an additional figure. 
At locations near the ends, Tmol and Trad are 6. 
almost equal, and therefore, the temperature 
which exists when both processes operate 
simultaneously will differ very little from either. 
At the central plane, x = 0*5L, the dashed 

,, 

curves of Fig. 10 also apply to the long tube. As 

R&nn&--Le. transport d’Cnergie dans le cas d’un &oulement t&s ran% dans un tube circulaire, avec 
conditions thermiques aux limites arbitraires, a btB CtudiC d’une maniere t&s g&n&ale. Le rayonnement 
thetmique et la convection libre en rCgime molCculaire libre agissent simultankment. Les cas oti la 
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temperature de paroi est constante, le flux de chaleur a la paroi est constant et la paroi adiabatique sont 
ttudies en detail. On trouve que pour tous les niveaux de temperature, sauf ceux qui sont tres en- 
dessous dela temperature ambiante,les r&mats correspondants autransport mixte par rayonnement 
et convection different peu de ceux relatifs au transport par rayonnement pur. Lorsque les resultats 
du transport par rayonnement pur different de facon appreciable de ceux relatifs au transport par 
convection pure, le rayonnement semble etre le mode predominant dans le processus du transport mixte. 

Zusammenfassung-Eine allgemeine Analyse, die such beliebige thermische Randbedingungen 
einschliesst, wurde fiir den Energietransport in einem Rohr mit Kreisquerschnitt, in dem hoch ver- 
dtinntes Gas strbmt, durchgefiihrt. Gleiclueitig mit der Konvektion freier Molekiile wirkt Temperatur- 
strahlung. Einer eingehenden Betrachtung wurden die Falle konstanter Wandtemperatur, konstanter 
Warmestromdichte durch die Wand und adiabater Wand unterzogen. Bei allen Temperaturen ausser 
jenen weit unter Raumtemperatur unterschieden sich die Ergebnisse fur gleichzeitigen konvektiven und 
radiativen Energietransport wenig von den Resultaten fur rem radiativen Transport. Soweit die 
Ergebnisse fiir reinen Strahlungstransport merklich von denen fur reinen Konvektionstransport 

abwichen, schien die Strahlung beim Simultantransport die ftihrende Rolle einzunehmen. 

AuuoTaqwJI-IIpoBeseH 0611@i aHanK nepeHoca 3HepraK np14 TeqeKKK cK3IbKo paapemeII- 
IIOrO ra3aB KpyI'JIOtiTpy6e,BKJIWIanCJIJ'~afi IIpOH3BOJIbHO~O nbI60paTepMK~eCKMXrpaHIW 
IIbIXyCJIOnII#. ~ennOBOer?3~y~eH~enpOMCXO~tlTO~HOB~eMeHHOCOCB060~HO-MOJIeK~~R~HO~ 
KOHBeKnKen. llOnpO6HO paCCMaTpnBaIoTCII CJIyqaK paBHOMepHOi TeMnepaTJ'pbI CTeHKR, 
paBHOMepHOr0 TeIIJIOBOI'O nOTOKa Ha CTeHKe Ii a~aa6arnsecnnx J'CJIOBIIn Ha CTeHKe. YCTa- 
HOB~eHO,YTO~~nBCeXTe~IIepaT~p,3allCK~lo~eHIleMTe~lne~aT~pHaMHOrOH~xteKO~HaTHO~, 
~aHHTJe~jIRCJIO~HOrOKOHBeKT~BHOrOIiJI~~IlCTOrOnepeHOCaO~eHbMa~OOT~~~a~TC~OT~alI- 

lIblXn.iIR npOCTOr0 JIyWICTOrO IIepeH0Ca.R TOM CJIy%Ie,KOrRanaIIHbIe AJrKWICTOrO nepeHOCa 
:,IIeprnn K3JIyqeHIIeM 3aMeTH0 OTJIWIaIoTCn OT naHHbIX YHCTOrO KOHBeKTIIBHOI'O nepeHOCa, 

JIyWCTbIn nepeHoc B 06meM npOueCCe OKa3bIBaeTCH npeo6na~aKunKM. 


