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SIMULTANEOUS HEAT TRANSFER IN A CIRCULAR TUBE BY
FREE-MOLECULE CONVECTION AND THERMAL RADIATION
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Abstract—A general analysis including arbitrary thermal boundary conditions has been made for the
energy transport in a circular tube in which a highly rarefied gas is flowing. Thermal radiation acts
simultaneously with the free-molecule convection. Detailed consideration was given to the cases of
uniform wall temperature, uniform wall heat flux, and the adiabatic wall. It was found that at all
temperature levels except those well below room temperature, the results corresponding to combined
convective and radiative transport differ little from those for purely radiative transport. Whenever
results for the purely radiative transport differed appreciably from those of the purely convective
transport, the radiation appeared to be the dominant mode in the simultaneous transport process.
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NOMENCLATURE
surface area;
accommodation coefficient;
tube diameter;
convective energy/time-area ;
angle factor;
solution of equation (12);
solution of equation (16);
integral defined by equation (13);
tube length;
mass flux/time-area;
pressure;
overall heat flux/time;
local heat flux/time-area;
uniform heat flux;
gas constant;
absolute temperature;
uniform wall temperature ;
dimensionless co-ordinate, x/d;
axial co-ordinate.

Greek symbols

a,

B,

absorptivity;

ratio of convective to radiative energy

efflux;

specific heat ratio;

emissivity;

energy variable, equation (9a);
dummy integration variables;
reflectivity ;

Stefan-Boltzmann constant.

Subscripts
1, reservoir 1;
2, reservoir 2;

r, rad, radiative;
m, mol, molecular.

INTRODUCTION

THis paper is concerned with the simultaneous
energy transport by convection and radiation
in a rarefied gas. Consideration will be given to
the free-molecule regime, wherein the density
level is such that the molecular mean free path is
much larger than a typical apparatus dimension.
The energy transport will be studied here for the
case of the circular tube. The mass flow in a
circular tube under free-molecule conditions has
already been investigated in some detail. This
work is summarized in [1], which is also devoted
to demonstrating a useful analogy between the
transfer of both mass and energy in a rarefied
gas and the transfer of energy by thermal
radiation. To demonstrate the analogy, the
energy throughflow and surface temperature
distribution associated with the convective
transport were calculated for the case of the
adiabatic tube wall. Pure radiative transport
through tubes has been studied by a number of
investigators [2, 3, 4]. To the knowledge of the
authors, the problem of simultaneous transport
has heretofore not been analysed.

To get a feeling for the relative magnitudes of
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the energy quantities involved, it is instructive
to compare the equilibrium energy fluxes
streaming from an isothermal cavity (temperature
T, pressure p) by radiation and by free-molecule
convection. The rate of radiative efflux per unit
area is oT*%, while the rate of convective energy
transport e per unit area is [5]

e~ osr [0 M

in which m, the mass flux per unit area, has the
value

]mT

b
V/@rRT) @
for equilibrium effiux from an isothermal cavity.
Then, forming the ratio (to be called ) of the
free-molecule to the radiative flux, there follows

mR(y + 1)
A vy, Q)

For air at 500°R (room temperature), 8 = 10°
p (atm). For a tube diameter of 0-1 in, pressures
no greater than 2 p Hg (2:6 X 10-% atm) would
probably insure free-molecule conditions; while
for a tube diameter of 1 in, pressures of 0-2 u Hg
and less would be required.* The corresponding
room-temperature 8 values would be 0-26 and
0-026. Since B ~ T-%'5, it is seen that § becomes
larger at low temperatures and becomes smaller
at high temperatures.

A schematic diagram of the circular tube
system under consideration here is shown in Fig,
1. A tube of diameter d and length L connects two
reservoirs. The reservoirs are large enough to
achieve internal thermodynamic equilibrium, and
the reservoir pressures are maintained by pumps
in an external flow circuit. The emission and
reflection of thermal radiation and the reflection
of mass at the tube wall is assumed to be diffuse.

GENERAL ANALYSIS
The local rate of heat transfer g at any location
along the tube surface is the sum of radiative gy
and free-molecular g, contributions,

4

q=4qr -+ qm

* Ratio of mean free path to diameter is 10.
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in which the heat fluxes are positive when heat
flows out of the surface. It is now necessary to
relate ¢, and g to the thermal and flow para-
meters of the system. These derivations are
quite lengthy, and only a general outline will be
given. For the net radiative flux ¢, at some
location x (area d4;) there are the following
contributions to be considered: (a) the emission,

N
A A

Fi1G. 1. Schematic of the circular tube system.

eoT*x); (b) the radiation from the reservoirs
1 and 2 which is directly incident and is absorbed
at x; (c) the radiation coming from all other sur-
face locations on the tube wall which arrives and
is absorbed at x. Because there is thermal equili-
brium in the reservoirs, the radiation streaming
into the tube is black-body radiation which is
uniformly and diffusely distributed across the
sections at x = 0 and x = L. From reservoir 1,
an energy flux oT}F;—, arrives at x per unit time
and area; the corresponding quantity from
reservoir 2 is oT3F;—. Of these, a fraction a is
absorbed. The absorbed energy flux discussed in
item (c) requires a somewhat lengthy derivation
which will be omitted here. Putting together the
various contributions to ¢r and additionally
assuming gray-body conditions (¢ = a), there is
obtained

g(X) = aocTHX) — aoT$Fx -1 — acTiFx-»
—ac [He THE) dFx ¢ + (1 — o) [ g ) dFx
(5

The last term on the right represents the energy
absorbed at X due to inter-reflected radiation.
The heat flux gy, for the molecular convection
is most easily derived by analogy with the radia-
tion balance of equation (5). In fact, it is only
necessary to replace a by the accommodation
coefficient @ and ¢7* by the convective energy
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flux e. This latter quantity is related to the tem-
peratures and pressures of the system in accor-
dance with equation (1), in which mass flux m
has the following forms depending on whether
e, €, or e(x) is being described

P12
My,

2~ V(2rRTy,)’
m(x) = my f(x) + myf (L — x).  (6)

The f function has been calculated in [1].

If the surface temperature is prescribed, then
equation (5) becomes an integral equation for
determining g, without recourse to the gm.
Similarly, the gn equation is independent of the
radiation process. The separate solutions for
gr and g, can be added together in accordance
with equation (4), and the local heat flux ¢
corresponding to the prescribed surface tempera-
ture thus obtained.

For prescribed heat flux ¢, the foregoing
equations are not at all convenient since the
separate components gr and g, would, in general,
not be known. It is therefore necessary to pro-
ceed further. After a rather lengthy development,
it was found possible to combine the ¢ and gn
equations with the aid of (4). The result is a
single, albeit highly complex, integral equation

“involving T and q.

—g(X) + aoTHX) + ae(X) — A(X)
=0 [§dTH¢)[a(2 — a) dFx—
— ol — a) dK(¢, X))
+ [§4 e(§)la2 — o) dFx—,
— a(l — a) dK(¢, X)]
— [§4&{0 — &) + (1 — @)] dFx—,
— (I —a (1 — o) dK(¢, X)} 0

in which A(X) represents a known function of X,
A(X) = (aoT} + aep)) Fx— — [a(l — a)oT?

+ a(l - a)eZ] f([)‘,d F€—2 dFX«—g
+ (aoT} + ae)Fx— — [a(l — a)oT}

+a(l — a)e,] [54 Fy dFx—, (7a)
and dK is an abbreviation for
dK(E, X) = fé‘/_fo ng/—E dFX—g/, (7b)

with ¢’ a dummy integration variable.

If ¢ is prescribed, then in principle, the tem-
perature distribution 7(X) can be solved for
from equation (7). However, the practical
aspects of obtaining solutions are quite formid-
able. First of all, the equation is nonlinear.
Numerical treatment would almost certainly be
required, especially since the f(X) functions
appearing in the e(X) are available numerically.
Even for the simplest problem of uniform wall
heat flux ¢(X) = ¢, there would be seven inde-
pendent parameters which would have to be
specified for each numerical solution.

9% T p mR(y + 1) L
UT";" T, X B = W, > a. (3)

If only two values of each parameter were
considered, this would amount to 128 (27)
separate cases. The computational effort for the
general situation a % a is clearly enormous.

For the special situation in which a« = g, a
significant simplification results. Upon adding
the ¢, and ¢ equations and noting that
q = qr + qm,

q'(ai) = 0(X) — 0,Fx 4 — 6;Fx—
Lid Lid
—j 0(§) dFx—+(1 — a)j q%) dFx-; (9
Y 0
in which
0 = e+ oTA (9a)

For a prescribed heat flux ¢(X), equation (9)
is a linear integral equation for 6(X). The
linearity means that separate solutions can be
obtained corresponding to each of the inhomo-
geneous terms [i.e. terms not containing 8(X)],
and the separate solutions are added to give the
complete solution. In this way, the number of
parameters which must be prescribed for a
given numerical solution are substantially re-
duced. Also, the linearity of the equation con-
tributes to the certainty that a numerical solu-
tion can be obtained.

DISCUSSION
In deciding on a reasonable direction for the
numerical work, it is appropriate to look at the
properties of typical engineering materials.
Surfaces which may be expected to emit and
reflect infra-red radiation in an approximately
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diffuse manner include non-metals, metallic
oxides, and perhaps very rough metallic sur-
faces. Such surfaces have moderate or high
values for the absorptivity coefficient a. On the
other hand, experimental values of the accom-
modation coefficient a for various gases on
engineering surfaces which have not been
physically and chemicaily cleaned and purged
of adsorbed gases tend to be high. In the light of
the foregoing discussion, it would appear that the
values of a and a appropriate to an analysis
based on diffusely distributed radiation should
not be greatly different.

For the case of prescribed surface tempera-
ture, the heat fluxes due to radiant transport
and to free-molecule transport can be deter-
mined separately. The combined heat flux can
then be found by summing these separate con-
tributions for any a or a, but as described above,
the results have practical meaning only for
moderate and high values of « and a.

For the case of prescribed heat flux, it would
be necessary to deal with equation (7) for the
case of a % a. When « = g, then equation (9)
can be applied. In view of the foregoing con-
sideration of the magnitudes of o and g, and
taking the complexity of (7) into account, the
authors are persuaded that (9) is a more appro-
priate starting point for numerical consideration
than is (7). From the results to be presented in
later sections, it will be seen that for surfaces
which can realistically be considered as diffuse,
there is little motivation to pursue the refinements
(i.e. a # a) contained in equation (7).

In the following section, consideration will be
given to the uniform wall temperature problem.
Subsequent sections will treat the uniform heat
flux problem and the adiabatic wall problem.

UNIFORM WALL TEMPERATURE
For the case of uniform wall temperature,
T(X) = T,, the governing equation (5) for the
radiative heat transfer can be simplified by using
the identity [54dFy—; =1 — Fx—1 — Fx 2, and
the solution may be written

T _ o1y — T9eX)

+ oty — 198 (3= ). (0

E. M. SPARROW and V. K. JONSSON

Similarly, the result for gy, is

ql(;’_) _ (;_(1’ - 1) e18a(X)

el )

The g function appearing in the foregoing is
obtained by solving

gi(X) = Fx1+ (1 —i) f§gi(§) dFx—,. (12)

To complete the heat-transfer results, it still
remains to supply the g functions. These have
been found by solving equation (12)* for L/d
values ranging from 1/4 to 32 and for a or
a values ranging from 0-2 to 1. This information
is presented graphically on Figs. 2 and 3, the
first of which pertains to smaller L/d while the
last pertains to larger L/d.

For short tubes, the g function varies only
slightly with x. Correspondingly, the heat flux
should have only a moderate x dependence. For
long tubes, the g function is essentially zero
throughout the entire tube, except for the
region near the end where there is a rapid varia-
tion. The heat transfer should also vary rapidly
near the end and be essentially zero elsewhere.
The level of the g curves is lower with increasing
o or a. However, the effect of this on g(x) is
opposed by the factors of e and a which appear
in equations (10) and (11).

With the information provided in Figs. 2 and
3, the local heat flux g can now be calculated by
adding the ¢, and gp. Inspection of the final
equation for g reveals the presence of seven
independent dimensionless parameters as well
as x/d. In any reasonable amount of space,
it is not possible to provide plots which will
demonstrate the complete parametric depen-
dence of the heat transfer. The best that one can
do is to try to establish some feeling for the
trends. Such a discussion can be carried out in a
somewhat simpler way for the soon-to-be-
presented overall heat-transfer results in which
x/d dependence does not appear.

The rate Q at which heat is transferred from
the entire tube wall may be found by integrating

* The required angle factorsmﬁaay be found_in__[i];
equations (7a), (7b) and (11).
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Fic. 4. The I integral for the overall heat-transfer calculation.

the local heat flux g, JEq(xynd (dx).
Carrying out the integration and introducing
the abbreviation

La e jp,
11:=J gi(X)dX:j gi('d"

0 0

X) dx (13

there results

Ao B

el ] o

in which the subscripts o and a identify the
parameter on which / depends. The numerical
values of I have been plotted on Fig. 4 as a
function of the tube length-diameter ratio for
parametric values of a or a. The most striking
feature of this graph is the fact that I is relatively
independent of L/d except for short tubes.
Considering equation (14), this implies that for
tubes which are not too short, the overall heat
transfer is relatively insensitive to changes in the
length. For instance, the heat transfer from a
tube having L = 154 is less than 1 per cent
different from a tube having L = 30d.

To get some feeling for the effect of the dimen-
sionless parameters, Figs. 5 and 6 have been
prepared. The figures show the overall heat
transfer as a function of §, in the range between
0 and 2. Fig. 5 is devoted to a typical short tube,
L/d = 1; while Fig. 6 is typical of a long tube,
L/d = 24. Curves are shown for two tempera-
ture conditions: T,/T, = To/T, = 11 (solid
lines) and T,o/T, = T,/T; = 1-6 (dashed lines),
and a variety of a and a values. The 8, = 0 case
corresponds to purely radiative transport, and
the curves have been normalized by the heat
transfer Qraa for pure radiation. Therefore,
the deviations of Q/Qraa from unity give a
direct measure of the effects of free-molecule
convection.

From the figures it is seen that for small
values of B;, the free-molecule transport con-
tributes to a rather small increase in the heat
transfer relative to that for pure radiation.
Recalling (from the Introduction) that for room
temperature and typical pressures, 8, ~ 0-025-
0-25, and noting further that B, ~ 77335 it
follows that the radiative tramsport clearly
dominates at temperatures above room tem-
perature. At lower temperatures and higher
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pressure levels* 8; can grow larger, but radiation
should still be dominant for « and a values at
which the assumption of diffuse reflection is
reasonable.

The trends for the short tube (Fig. 5) are also
in evidence for the long tube (Fig. 6). But, there
is one marked difference. Namely, that for the
fong tube, the results are much less influenced
by the detailed values of a and «. It may addi-
tionally be noted from Fig. 4 that tubes oé‘
moderate length already behave like long tubes.

UNIFORM WALL HEAT FLUX

As previously discussed, consideration of the
uniform heat flux case will be specialized to the
situation o« = a. To determine the wall tem-
perature corresponding to the prescribed heat
flux q,, the first step is to solve equation (9) for
the 6 distribution and then, with this #(X) as
input, the next step is to solve the quadratic
equation (9a) for T(X}.

The solution of equation (9} is facilitated by
its linearity.

00) = e(X) + oTHX) = 0, (X)
s (5= X) 400 [+ a0 a9

* Smaller apparatus dimensions ‘would be required to
achieve free-molecule conditions at higher pressures.

am
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in which
hX)= 1+ [L4h() dfzg. (16)

Additionally, in deriving equation (15), the
identity f(X) -+ f(L/d — X) = 1 has been used
{1}, Then, by introducing the definitions of #
and e and rearranging, one can derive

5] 8 oo

NI

SR 1
s a1 )

T\* gy |1 —a

] L]

This is a fourth degree algebraic equation, the
solution to which gives the distribution of the
wall temperature as a function of position along
the tube. The f function needed in this calcula-
tion is plotted on Fig. 2 of {1] for L/d values up
to 24. For larger L/d, it is sufficient to use
F(X)=1—(d/L)X. The ) function has been
determined as part of this investigation and is
plotted on Fig. 7 as a function of x/L. The curves

(17

» £i{x)
AL

Alx) and AlX)/(L/d)

O L A B D

 FOR x>(L/2), A¥)=h{L-x)

FiG. 7. The & function for the uniform heat flux case.
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FiG. 8. Illustrative wall temperature results for the uniform heat flux case, L/d = 1.

correspond to L/d values ranging from 1/4 to 32.
The figure shows that in addition to an increase
in level with L/d, the % function also varies
strongly with position for the longer tubes—
the larger values being at the center of the tube
(x = 0-5L). That this 1s physically plausible may
be understood by noting that A is directly related
to the distribution of the tube wall temperature
corresponding to the case of uniform wall heat
flux [4].

The surface temperature distribution depends
upon prescribed values of six independent
parameters, equation (17). Once again, space
limitations preclude a presentation of the com-
plete parametric dependence of the results.
However, to provide an insight into trends, the
illustrative Figs. 8 and 9 have been prepared.
Attention is directed first to Fig. 8, which is
meant to typify short tubes. Here, there is
plotted the wall temperature at the mid-plane
(x = 0-5L) as a function of energy flux ratio 8,
for parametric values of 7,/7}, p./p; and a(=a).
The mid-plane temperature has been normalized
by the temperature Traq Which would exist at
this location if radiative transport acted alone.
Therefore, the deviation of the curves from unity

immediately gives the effect of free-molecule
convection. Working plots (not shown here)
for locations x = 0 and x = L in the L/d = 1
tube are qualitatively similar to Fig. 8 and
differ quantitatively only to a small extent.
This is to be expected in a short tube.

The first point to be noted in appraising Fig. 8
is the rather expanded ordinate scale. Cor-
responding to the prior estimate of 0-025-0-25
for B, at room temperature, it is seen from the
figure that the wall temperature is very little
different from that which would exist for purely
radiative transport. Even for higher §; values
(lower temperature levels), the deviations from
Traq are not appreciable in most cases. There are
a few curves, all for p,/p; = 3, which indicate
moderate deviations from Traq at the larger B,
values. However, since B, ~ p,, it is not likely
that large B, and large p,/p, will occur simul-
taneously. The results of Fig. 8 were calculated
for the condition a = a. It is expected that the
deviations of T from Traa will not be large at
small B8; for any a and @ consistent with the
diffuse model.

Fig. 9, typical of long tubes, is constructed
somewhat differently from Fig. 8. This is
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Fic. 9. Tliustrative wall temperature results for the uniform heat flux case, L/d = 24.

necessary because the F/Twq ratio is now a
stronger function of position. The lower part of

part is for x = 0 and x = 0-5L. Expanded
ordinate scales are employed as before. An
important feature of Fig. 8 is the fact that the
dependence of the T/Tyaq ratio on a is essentially
negligible, In fact, the term (I — a4)/a may be
deleted from equation (17) without loss, for
values of a and « that are realistic for the con-
dition of diffuse reflection and emission. In
effect, this removes the restriction that a = a.
The deviations of T/7raa from unity are seen to
be small for room temperature B; values
(0-025-0-25). The lowest curve on the figure
indicates that cases do exist where large devia-
tions are possible provided that 8; and p,/p, are
both large; but as previously discussed, this is
not a too likely situation.

ADIABATIC WALL

The adiabatic wall condition can be treated as
a special case of the uniform heat flux analysis
merely by setting ¢, = 0 in equation (17). These
results depend on four parameters: T,/T;,
Peip1, Lid, and B,. As before, there are too many
parameters for a detailed graphical presentation,
and representative cases will be selected to show
trends.

Fig. 10 presents adiabatic wall temperature
results for Ljd = 1, a typical short tube. The
upper part of the figure is for 7,/7; = 1-1, while
the lower part is for T,/ 1-6. Curves are
given for three locations: x = 0, x = 0-5L, and
x = L. The results are normalized by the adia-
batic wall temperature for pure radiation, Traa.
The deviations of T from Traq are seen to be small
indeed. It might at first appear that this is
because the radiation dominates over the
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FiG. 10. Hlustrative adiabatic wall temperature resuits, L/d = 1.

molecular transport. However, this is not neces-
sarily so. To check this matter, the ratios of
Tmo1 (the adiabatic wall temperature for pure
molecular transport) to Traq have been calculated
and are listed in the right-hand margin of Fig. 10.
It is seen that for most cases, Tmo1 and Traq are
not very different. It is therefore reasonable that
the adiabatic wall temperature which results
when both processes are operating simul-
taneously will not be very different from either
Tmol or Traq. For those few cases where Tiot and
Traa are significantly different, the radiative
transport appears to be dominant. This con-
clusion ought also to hold for a 5= « which are
realistic for diffuse surfaces.

The findings for the long tube can be stated
without the assistance of an additional figure.
At locations near the ends, Tmo1 and Traq are
almost equal, and therefore, the temperature
which exists when both processes operate
simultaneously will differ very little from either.
At the central plane, x = 0-5L, the dashed
curves of Fig. 10 also apply to the long tube. As

before, whenever Tmo1 and 7raq are appreciably
different, the radiative transport wins out.

REFERENCES

1. E. M. Sparrow, V. K. Jonsson and T. S. LUNDGRENs
Free-molecule tube flow and adiabatic wall tempera-
tures, J. Heat Transfer, C85, 111-118 (1963).

2. H. Buckiey, On the radiation from the inside of a
circular cylinder, Part I, Phil. Mag. 4, 23, 753-762
(1927).

3. H. C. HottEL and J. D. KELLER, Effect of reradiation
on heat transmission in furnaces and through openings,
Trans. ASME, 55, 39-49 (1933).

4. C. M. UsiskIN and R. SieGeL, Thermal radiation from
a cylindrical enclosure with specified wall heat flux,
J. Heat Transfer, Trans. ASME, C 82, 369-374 (1960).

5. S. A. ScHaAF and P. L. CHaMmBRE, Flow of rarefied
gases. High Speed Aerodynamics and Jet Propulsion,
Princeton University Press, Section H, Vol. 3, (1958).

6. J. P. HARTNETT, A Survey of Thermal Accommodation
Coefficients, Advances in Applied Mechanics, Supple-
ment 1, Rarefied Gas Dynamics, pp. 1-28. Academic
Press, New York (1961).

7. H. Y. WAcuMAN, The thermal accommodation co,
efficient, a critical survey, J. Amer. Rocket Soc. 32-
2-12 (1962).

Résumé—Le transport d’énergie dans le cas d’un écoulement trés raréfié dans un tube circulaire, avec
conditions thermiques aux limites arbitraires, a été étudié d’une maniére trés générale. Le rayonnement
thermique et la convection libre en régime moléculaire libre agissent simultanément. Les cas ou la
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température de paroi est constante, le flux de chaleur a la paroi est constant et la paroi adiabatique sont
étudiés en détail. On trouve que pour tous les niveaux de température, sauf ceux qui sont trés en-
dessous de la température ambiante, les résultats correspondants au transport mixte par rayonnement
et convection different peu de ceux relatifs au transport par rayonnement pur. Lorsque les résultats
du transport par rayonnement pur difféerent de fagon appréciable de ceux relatifs au transport par
convection pure, le rayonnement semble étre le mode prédominant dans le processus du transport mixte.

Zusammenfassung—FEine allgemeine Analyse, die auch beliebige thermische Randbedingungen
cinschliesst, wurde fiir den Energietransport in einem Rohr mit Kreisquerschnitt, in dem hoch ver-
diinntes Gas stromt, durchgefiihrt. Gleichzeitig mit der Konvektion freier Molekiile wirkt Temperatur-
strahlung. Einer eingehenden Betrachtung wurden die Félle konstanter Wandtemperatur, konstanter
Wirmestromdichte durch die Wand und adiabater Wand unterzogen. Bei allen Temperaturen ausser
jenen weit unter Raumtemperatur unterschieden sich die Ergebnisse fiir gleichzeitigen konvektiven und
radiativen Energietransport wenig von den Resultaten fiir rein radiativen Transport. Soweit die
Ergebnisse fiir reinen Strahlungstransport merklich von denen fiir reinen Konvektionstransport
abwichen, schien die Strahlung beim Simultantransport die fithrende Rolle einzunehmen.

Audoranna—IIposegeH o0l aHAAN3 NlePeHOCA PHEPIMU NPM TeYeHH CUILHO pas3peren-
HOrO rasa B KPYraofl TpyGe, BRIKYAA CXyYall MIPOMBBOJIBLHOTO BHOOPA TEPMHUECKUX TPAHUY-
HBIX yeaouil., TemmoBoe namydeHNe NPOMCXOAUT OFHOBPEMEHHO CO CBOGOTHO-MONIEKYJIAPHOH
rouBernuent, Ilongpo6HO pPACCMATPUBAITCA CiydYau PABHOMEDHON TeMIIEpATYPH CTEHKH,
pPABHOMEPHOTO TENIIOBOrO IOTOKA HA CTEHKe H afAnafaTMYecKUX YCIOBHH Ha CTeHKe. Ycra-
HOBIJIEHO, UTO JJIAl BCEX TEMIIEPATYP, 32 UCKIIOUeHNeM TeMIepaTyp HAMHOTO HUe KOMHATHON,
AAHHBLE AJIA CI0KHOT0 KOHBEKTHBHOTO M JIYYUCTOrO MePEHOca 04eHb MaJI0 OTJIHYAIOTCA OT JIaH-
HBLX [JIA TPOCTOTO JIyUMCTOrO mepeHoca. B TOM ciyyae, KOrja JaHHBe AJIA YUCTOrO mepeHoca
DHEPIWH UANYYCHUEM 3aMETHO OTIMYAIOTCA OT JAHHEIX YHCTOr0 KOHBEKTHBHOTO TIEPEHOCA,
NYYMCTHIA NepeHoc B 001eM NpoHecce OKA3HBAETCH NMpPeolIalatonum .



